Meneley Bell was chosen carefully

Wofford's bell was cast by the Meneley Bell Foundry in West Troy, NY. Andrew Meneley started the foundry in 1826, after an apprenticeship with Julius Hanks, who was one of the earliest bell founders in America. (Hanks was a relative of Nancy Hanks Lincoln, Abraham Lincoln's mother.) Meneley brought his oldest son, Edwin, into the family business, and after Andrew Meneley's death in 1851, Edwin Meneley brought one of his brothers into the business. The two brothers continued to operate the foundry as Andrew Meneley's Sons. When a third brother, Clinton Hanks Meneley, returned from the Civil War, the first two brothers refused to take him into the company. This led to the formation of a second Meneley Foundry in 1870, across the river in Troy, NY. Both companies went out of business in the early 1900s, due partly to increasing metal prices and partly to the increasing popularity of electronic bells and chimes.

Because of the Meneley family's position as being among the earliest and foremost bell founders, a Meneley bell today can be a valuable artifact, selling for $10 to $20 per pound. Together, the two Meneley companies produced an estimated 66,000 bells, many of which still hang in churches and colleges throughout the United States. The replacement for the cracked Liberty Bell in Independence Hall was cast at a Meneley Foundry.

Bell casting is both an art and a science. Before casting can take place, a bell must be designed carefully. The founder first builds an inner core, then uses molding clay to create a false bell. The inscriptions are added to the surface of the false bell, then an additional layer of fine molding material is added to the surface. The founder then builds an iron case around the false bell, filling it with molding material as the sections are added. When finished, the outer mold is lifted off, the false bell is broken away, and the two halves of the bell mold are fitted together. The founder pours molten bronze into the mold, and the bell is allowed to cool in the ground for several weeks. The founder has many anxious moments before he can test the bell's tone, for despite his or her best efforts, the product can still be a dud.

A bell's pitch depends on its weight, and the metal must be tapered in thickness to ensure that it is in tune. When struck, a bell produces a chord of five separate pitches, including the note for which it is pitched, a minor third, a perfect fifth, and an octave above the strike note, and a hum tone that is an octave below the strike note. Each note reverberates from a different part of the bell.